Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1116851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021319

RESUMO

Plant genomes are comprised of nuclear, plastid and mitochondrial components characterized by different patterns of inheritance and evolution. Genetic markers from the three genomes provide complementary tools for investigations of inheritance, genetic relationships and phenotypic contributions. Plant mitochondrial genomes are challenging for universal marker development because they are highly variable in terms of size, gene order and intergenic sequences and highly conserved with respect to protein-coding sequences. PCR amplification of introns with primers that anneal to conserved, flanking exons is effective for the development of polymorphic nuclear genome markers. The potential for plant mitochondrial intron polymorphisms to distinguish between congeneric species or intraspecific varieties has not been systematically investigated and is possibly constrained by requirements for intron secondary structure and interactions with co-evolved organelle intron splicing factors. To explore the potential for broadly applicable plant mitochondrial intron markers, PCR primer sets based upon conserved sequences flanking 11 introns common to seven angiosperm species were tested across a range of plant orders. PCR-amplified introns were screened for indel polymorphisms among a group of cross-compatible Citrus species and relatives; two Raphanus sativus mitotypes; representatives of the two Phaseolus vulgaris gene pools; and congeneric pairs of Cynodon, Cenchrus, Solanum, and Vaccinium species. All introns were successfully amplified from each plant entry. Length polymorphisms distinguishable by gel electrophoresis were common among genera but infrequent within genera. Sequencing of three introns amplified from 16 entries identified additional short indel polymorphisms and nucleotide substitutions that separated Citrus, Cynodon, Cenchrus and Vaccinium congeners, but failed to distinguish Solanum congeners or representatives of the Phaseolus vulgaris major gene pools. The ability of primer sets to amplify a wider range of plant species' introns and the presence of intron polymorphisms that distinguish congeners was confirmed by in silico analysis. While mitochondrial intron variation is limited in comparison to nuclear introns, these exon-based primer sets provide robust tools for the amplification of mitochondrial introns across a wide range of plant species wherein useful polymorphisms can be identified.

2.
Phytopathology ; 112(9): 1833-1843, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35345903

RESUMO

Huanglongbing (HLB), caused by 'Candidatus Liberibacter asiaticus' (CLas), is a devastating disease of citrus. After initial infection, CLas quickly colonizes the root system before canopy symptoms develop. There is limited understanding of CLas movement from roots to canopy and local and systemic effects on root dynamics. Using split-root rhizoboxes and late summer below-the-split bud inoculation, effects of local infection on systemic disease development were studied. Upward bacterial movement from roots is linked to seasonal flushes and CLas population in roots. CLas stayed isolated to one side of the roots for at least 8 months, until the spring flush. HLB caused differential root responses depending on tree age at infection. Systemic effects, independent of CLas movement, occur very early after infection. Stimulation of root growth occurred on noninfected roots prior to CLas detection in 1.5-year-old trees but decreased in 2.5-year-old trees. Independent of tree age, root growth was stimulated during spring root flushes after CLas population stabilized. Root dieback began simultaneously with detection of CLas in roots (6 weeks postinoculation). Infection and tree age altered root lifespan. In total, 1.5-year-old CLas-infected roots from summer and fall flushes had 3 and 6 weeks reduced lifespan. In contrast, 2.5-year-old CLas-infected plants lifespan was unaffected. Season affected root lifespan with late summer root flush lifespan was three times shorter than fall or spring root flushes. Split-root inoculation allowed study of local and systemic effects of CLas infection in roots, information crucial to prolonging the productivity of HLB-affected trees.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Citrus/microbiologia , Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Fenômenos Fisiológicos Vegetais , Rhizobiaceae/fisiologia , Árvores
3.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181825

RESUMO

Citrus canker type A is a serious disease caused by Xanthomonas citri subsp. citri (X. citri), which is responsible for severe losses to growers and to the citrus industry worldwide. To date, no canker-resistant citrus genotypes are available, and there is limited information regarding the molecular and genetic mechanisms involved in the early stages of the citrus canker development. Here, we present the CitrusKB knowledge base. This is the first in vivo interactome database for different citrus cultivars, and it was produced to provide a valuable resource of information on citrus and their interaction with the citrus canker bacterium X. citri. CitrusKB provides tools for a user-friendly web interface to let users search and analyse a large amount of information regarding eight citrus cultivars with distinct levels of susceptibility to the disease, with controls and infected plants at different stages of infection by the citrus canker bacterium X. citri. Currently, CitrusKB comprises a reference citrus genome and its transcriptome, expressed transcripts, pseudogenes and predicted genomic variations (SNPs and SSRs). The updating process will continue over time by the incorporation of novel annotations and analysis tools. We expect that CitrusKB may substantially contribute to the field of citrus genomics. CitrusKB is accessible at http://bioinfo.deinfo.uepg.br/citrus. Users can download all the generated raw sequences and generated datasets by this study from the CitrusKB website.


Assuntos
Citrus , Citrus/genética , Bases de Conhecimento , Doenças das Plantas/genética , Transcriptoma/genética , Xanthomonas
4.
Transgenic Res ; 27(2): 179-191, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29446008

RESUMO

Genetic engineering approaches offer an alternative method to the conventional breeding of Citrus sp. 'W. Murcott' mandarin (a hybrid of 'Murcott' and an unknown pollen parent) is one of the most commercially important cultivars grown in many regions around the world. Transformation of 'W. Murcott' mandarin was achieved by direct DNA uptake using a protoplast transformation system. DNA construct (pAO3), encoding Green Fluorescent Protein (GFP) and the cDNA of Xa21, a Xanthomonas resistance gene from rice, was used to transform protoplasts of 'W. Murcott' mandarin. Following citrus protoplast culture and regeneration, transformed micro calli were microscopically designated via GFP expression, physically isolated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. More than 150 transgenic embryos were recovered and from them, ten transgenic lines were regenerated and cultured on rooting medium for shoot elongation. Transgenic shoots were micrografted and established in the greenhouse with 3-5 replicates per line. The insertion of Xa21 and GFP was confirmed by PCR and southern blot analysis. GFP expression was verified by fluorescence microscopy and western blot analysis revealed expression of Xa21 although it was variable among transgenic lines, as shown by RT-qPCR. Transgenic plants challenged with the citrus canker pathogen by syringe inoculation showed a reduction in lesion number and bacterial populations within lesions compared to non-transgenic control plants. Transgenic 'W. Murcott' mandarin lines with improved canker resistance via protoplast transformation from embryogenic callus with the Xa21 gene from rice are being evaluated under field conditions to validate the level of resistance.


Assuntos
Citrus/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Proteínas Serina-Treonina Quinases/genética , Citrus/crescimento & desenvolvimento , Citrus/microbiologia , Resistência à Doença/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/administração & dosagem , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/microbiologia , Proteínas Serina-Treonina Quinases/administração & dosagem , Protoplastos/microbiologia
5.
Front Plant Sci ; 9: 1858, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666259

RESUMO

Host disease resistance is the most desirable strategy for control of citrus canker, a disease caused by a gram-negative bacterium Xanthomonas citri subsp. citri. However, no resistant commercial citrus cultivar has been identified. Cybridization, a somatic hybridization approach that combines the organelle and nuclear genomes from different species, was used to create cybrids between citrus canker resistant 'Meiwa' kumquat (Fortunella crassifolia Swingle snym. Citrus japonica Thunb.) and susceptible grapefruit (Citrus paradisi Macfad) cultivars. From these fusions, cybrids with grapefruit nucleus, kumquat mitochondria and kumquat chloroplasts and cybrids with grapefruit nucleus, kumquat mitochondria and grapefruit chloroplasts were generated. These cybrids showed a range of citrus canker response, but all cybrids with kumquat chloroplasts had a significantly lower number of lesions and lower Xanthomonas citri subsp. citri populations than the grapefruit controls. Cybrids with grapefruit chloroplasts had a significantly higher number of lesions than those with kumquat chloroplasts. To understand the role of chloroplasts in the cybrid disease defense, quantitative PCR was performed on both cybrid types and their parents to examine changes in gene expression during Xanthomonas citri subsp. citri infection. The results revealed chloroplast influences on nuclear gene expression, since isonuclear cybrids and 'Marsh' grapefruit had different gene expression profiles. In addition, only genotypes with kumquat chloroplasts showed an early up-regulation of reactive oxygen species genes upon Xanthomonas citri subsp. citri infection. These cybrids have the potential to enhance citrus canker resistance in commercial grapefruit orchards. They also serve as models for understanding the contribution of chloroplasts to plant disease response and raise the question of whether other alien chloroplast genotypes would condition similar results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...